A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.

نویسندگان

  • Shinsuke Nakagawa
  • Mária A Deli
  • Hiroko Kawaguchi
  • Takeshi Shimizudani
  • Takanori Shimono
  • Agnes Kittel
  • Kunihiko Tanaka
  • Masami Niwa
چکیده

Blood-brain barrier (BBB) characteristics are induced and maintained by cross-talk between brain microvessel endothelial cells and neighbouring elements of the neurovascular unit. While pericytes are the cells situated closest to brain endothelial cells morphologically and share a common basement membrane, they have not been used in co-culture BBB models for testing drug permeability. We have developed and characterized a new syngeneic BBB model using primary cultures of the three main cell types of cerebral microvessels. The co-culture of endothelial cells, pericytes and astrocytes mimick the anatomical situation in vivo. In the presence of both pericytes and astrocytes rat brain endothelial cells expressed enhanced levels of tight junction (TJ) proteins occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. Further morphological evidence of the presence of interendothelial TJs was provided by electron microscopy. The transendothelial electrical resistance (TEER) of brain endothelial monolayers in triple co-culture, indicating the tightness of TJs reached 400Omegacm(2) on average, while the endothelial permeability coefficients (P(e)) for fluorescein was in the range of 3x10(-6)cm/s. Brain endothelial cells in the new model expressed glucose transporter-1, efflux transporters P-glycoprotein and multidrug resistance protein-1, and showed a polarized transport of rhodamine 123, a ligand for P-glycoprotein. To further characterize the model, drug permeability assays were performed using a set of 19 compounds with known in vivo BBB permeability. Good correlation (R(2)=0.89) was found between in vitroP(e) values obtained from measurements on the BBB model and in vivo BBB permeability data. The new BBB model, which is the first model to incorporate pericytes in a triple co-culture setting, can be a useful tool for research on BBB physiology and pathology and to test candidate compounds for centrally acting drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes

In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular pe...

متن کامل

Pericytes from Mesenchymal Stem Cells as a model for the blood-brain barrier

Blood brain-barrier (BBB) in vitro models have been widely reported in studies of the BBB phenotype. However, established co-culture systems involve brain endothelial cells, astrocytes, neurons and pericytes, and therefore are often consuming and technically challenging. Here we use mesenchymal system cells (MSC) as a potential substitute for pericytes in a BBB model. Both MSC and pericyte mark...

متن کامل

Neural progenitor cells and blood-brain barrier modeling.

are that in vitro models do not fully recapitulate the in vivo BBB and difficulties in obtaining the appropriate human tissue necessary for in vitro modeling. The paper in this issue by Lippmann et al. (2011) from the group of Eric Shusta, is an important step towards resolving both these issues. The BBB is formed by the cerebral endothelial cells and their linking tight junctions. However, BBB...

متن کامل

Multicellular Self-Assembled Spheroidal Model of the Blood Brain Barrier

The blood brain barrier (BBB) has evolved unique characteristics such as dense coverage of the endothelial cells by pericytes and interactions with astrocytes through perivascular endfeet. We study BBB formation in a 3-dimensional multicellular spheroid system of human primary brain endothelial cells (hpBECs), primary pericytes (hpPs) and primary astrocytes (hpAs). We show for the first time th...

متن کامل

A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources

Blood-brain barrier (BBB) models are often used to investigate BBB function and screen brain-penetrating therapeutics, but it has been difficult to construct a human model that possesses an optimal BBB phenotype and is readily scalable. To address this challenge, we developed a human in vitro BBB model comprising brain microvascular endothelial cells (BMECs), pericytes, astrocytes and neurons d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurochemistry international

دوره 54 3-4  شماره 

صفحات  -

تاریخ انتشار 2009